服務(wù)熱線
產(chǎn)品展示PRODUCTS
品牌 | 其他品牌 | 價(jià)格區(qū)間 | 面議 |
---|---|---|---|
產(chǎn)地類別 | 進(jìn)口 | 應(yīng)用領(lǐng)域 | 醫(yī)療衛(wèi)生,生物產(chǎn)業(yè) |
背景
FMS系列能量代謝監(jiān)測系統(tǒng)方案作為SSI家族一款經(jīng)典、堅(jiān)固耐用、多用途的高精度高分辨率代謝測量主機(jī),受到以各類昆蟲、實(shí)驗(yàn)動(dòng)物、小型及中大型野生動(dòng)物、家禽家畜、人體等為研究對象的生理學(xué)、生態(tài)健康、生物醫(yī)學(xué)科學(xué)家的極度青睞。FMS的再度升級(jí)改版,以更小體積、更大的數(shù)據(jù)儲(chǔ)存容量、智能化大觸摸屏、更簡化的操作、更合理的價(jià)格將再次引爆專注于實(shí)驗(yàn)研究科學(xué)家靈活機(jī)動(dòng)的創(chuàng)新性生物新陳代謝研究熱情。
應(yīng)用領(lǐng)域
野生動(dòng)物(含媒介動(dòng)物)適應(yīng)環(huán)境的行為、生理、進(jìn)化等研究
以實(shí)驗(yàn)動(dòng)物為模型的肥胖、心血管、糖尿病、衰老等健康研究
以家畜家禽等經(jīng)濟(jì)動(dòng)物為研究對象的營養(yǎng)學(xué)、溫室氣體排放等研究
以人體為研究對象的運(yùn)動(dòng)生理學(xué)、環(huán)境模擬生理學(xué)、特殊人群營養(yǎng)學(xué)等健康研究
技術(shù)特點(diǎn)
全新迷你型主機(jī),堅(jiān)固的外殼,帶搬運(yùn)手柄,具有最大的便攜性,可在各種復(fù)雜野外環(huán)境條件下現(xiàn)場使用
面板32GB SD卡數(shù)據(jù)存儲(chǔ)允許即時(shí)存儲(chǔ)信息,而無需單獨(dú)的計(jì)算機(jī)
溫度氣壓自動(dòng)補(bǔ)償,消除環(huán)境溫度氣壓變化引起的誤差
8通道模擬信號(hào)輸入,可兼容其它分析儀或傳感器,4通道溫度輸入
超大觸摸屏實(shí)時(shí)顯示儀器各參數(shù),可同時(shí)顯示氧氣、二氧化碳、水汽壓、大氣壓、相對濕度、模擬輸入信號(hào)、儲(chǔ)存大小、取樣情況、日期時(shí)間序列等數(shù)據(jù)
具備功能強(qiáng)大的擴(kuò)展端口,可以組成多通道或各種因素控制的全面新陳代謝監(jiān)測系統(tǒng)
具備電源線或鋰離子電池包(4.8 A-H),野外運(yùn)行時(shí)間至少6小時(shí)
技術(shù)指標(biāo)
1.傳感器:O2分析儀,燃料電池技術(shù),使用壽命約2年,燃料電池可更換;CO2分析儀,無色散雙波長紅外氣體分析儀;水汽分析儀,薄膜電容傳感器
2.測量范圍:O2,0 - 100%;大氣壓,30-110 kPa;CO2,0 – 5%;水汽壓,0-100% RH(無凝結(jié)),溫度0-100°C
3.精度:O2:2-100%讀數(shù)的0.1%;CO2:0-5%讀數(shù)的1%;H2O:0-95% RH讀數(shù)的1%,95-100%優(yōu)于2%;溫度 0.2? C
4.分辨率:O2: 0.001%;CO2: 0.0001%-0.01%;H2O: 0.001%RH
5.信號(hào)漂移:溫度恒定的情況下O2: <0.02%每小時(shí);CO2: <0.001%每小時(shí);H2O: < 0.01%RH每小時(shí)
6.信號(hào)輸入:八個(gè)標(biāo)準(zhǔn)電壓雙極模擬輸入,四個(gè)溫度輸入
7.模擬輸出:O2, CO2, 2個(gè)自定義
8.數(shù)字控制輸出:8個(gè)TTL邏輯信號(hào)
9.數(shù)字輸出:USB 到RS-232,Sablebus快速接口
10.內(nèi)置存儲(chǔ)器:SD存儲(chǔ)卡,可達(dá)32GB
11.存儲(chǔ)時(shí)間間隔:0.1sec到1hr用戶自定義
12.氣流流量:10-1500mL/min
13.流量控制精度:讀數(shù)的2%
14.流量分辨率:0-99.9mL/min為0.1mL/min;100mL/min 以上為1mL/min
15.工作溫度:3-50 °C,無冷凝
16.供電:12-15 VDC,帶220V交流電適配器;可選配鋰電池供電,方便野外操作。
17.尺寸:35cm×30cm×15cm
18.重量:4kg
19.呼吸室和代謝測量方案定制(如下圖)
典型應(yīng)用一
Comparison of the CO2 ventilatory response through development in three rodent species: Effect of fossoriality,Sprenger R J, Kim A B, Dzal Y A, et al. Respiratory physiology & neurobiology, 2019, 264: 19-27.
典型應(yīng)用二
Greater energy demand of exercise during pregnancy does not impact mechanical efficiency,Denize K M, Akbari P, da Silva D F, et al. Applied Physiology, Nutrition, and Metabolism, 2019.
美國婦產(chǎn)科學(xué)院和加拿大的婦產(chǎn)科醫(yī)生協(xié)會(huì)發(fā)表了最新的孕婦活動(dòng)指南,建議孕婦進(jìn)行150分鐘中等強(qiáng)度運(yùn)動(dòng)以減少妊娠并發(fā)癥,有利于母體和嬰兒的健康。然而懷孕(嬰兒作為特殊負(fù)重)是如何影響孕婦的能量投入、活動(dòng)體能和機(jī)械效率的卻了解很少。該研究通過FMS便攜式能量代謝儀來定量化不同運(yùn)動(dòng)程序的能量消耗和機(jī)械效率。
產(chǎn)地
美國
部分參考文獻(xiàn)
1.Charters J E, Heiniger J, Clemente C J, et al. Multidimensional analyses of physical performance reveal a size‐dependent trade‐off between suites of traits[J]. Functional Ecology, 2018, 32(6): 1541-1553.
2.Cochran J P, Haskins D L, Eady N A, et al. Coal combustion residues and their effects on trace element accumulation and health indices of eastern mud turtles (Kinosternon subrubrum)[J]. Environmental Pollution, 2018, 243: 346-353.
3.de Melo Costa C C, Maia A S C, Nascimento S T, et al. Thermal balance of Nellore cattle[J]. International journal of biometeorology, 2018, 62(5): 723-731.
4.Denize, Kathryn M., et al. "Greater energy demand of exercise during pregnancy does not impact mechanical efficiency." Applied Physiology, Nutrition, and Metabolism ja (2019).
5.Fernandes M H M R, Lima A R C, Almeida A K, et al. Fasting heat production of S aanen and A nglo N ubian goats measured using open‐circuit facemask respirometry[J]. Journal of animal physiology and animal nutrition, 2017, 101(1): 15-21.
6.Fonseca V C, Saraiva E P, Maia A S C, et al. Models to predict both sensible and latent heat transfer in the respiratory tract of Morada Nova sheep under semiarid tropical environment[J]. International journal of biometeorology, 2017, 61(5): 777-784.
7.Friesen C R, Johansson R, Olsson M. Morph‐specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon[J]. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2017, 327(7): 433-443.
8.Guigueno M F, Head J A, Letcher R J, et al. Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks[J]. Environmental pollution, 2019, 253: 899-908.
9.Haskins D L, Hamilton M T, Stacy N I, et al. Effects of selenium exposure on the hematology, innate immunity, and metabolic rate of yellow-bellied sliders (Trachemys scripta scripta)[J]. Ecotoxicology, 2017, 26(8): 1134-1146.
10.Ivy C M, York J M, Lague S L, et al. Validation of a pulse oximetry system for high-altitude waterfowl by examining the hypoxia responses of the Andean goose (Chloephaga melanoptera)[J]. Physiological and Biochemical Zoology, 2018, 91(3): 859-867.
11.Ladds M A, Slip D J, Harcourt R G. Swimming metabolic rates vary by sex and development stage, but not by species, in three species of Australian otariid seals[J]. Journal of Comparative Physiology B, 2017, 187(3): 503-516.
12.Lenard A, Gifford M E. Mechanisms Influencing Countergradient Variation in Prairie Lizards, Sceloporus consobrinus[J]. Journal of Herpetology, 2019, 53(3): 196-203.
13.Louppe V, Courant J, Videlier M, et al. Differences in standard metabolic rate at the range edge versus the center of an expanding invasive population of Xenopus laevis in the West of France[J]. Journal of Zoology, 2018, 305(3): 163-172.
14.Maia A S C, Nascimento S T, Carvalho M D, et al. Enteric methane emission of Jersey dairy cows: an investigation on circadian pattern[C]//21ST INTERNATIONAL CONGRESS OF BIOMETEOROLOGY. 2017: 100.
15.Nascimento C C N, de Fran?a Carvalho Fonsêca V, de Melo Costa C C, et al. Respiratory functions and adaptation: an investigation on farm animals bred in tropical environment[J]. 2017.
16.Noren D P, Holt M M, Dunkin R C, et al. Echolocation is cheap for some mammals: Dolphins conserve oxygen while producing high-intensity clicks[J]. Journal of experimental marine biology and ecology, 2017, 495: 103-109.
17.Otálora-Ardila A, Flores-Martínez J J, Welch K C. The effect of short-term food restriction on the metabolic cost of the acute phase response in the fish-eating Myotis (Myotis vivesi)[J]. Mammalian Biology, 2017, 82(1): 41-47.
18.Sanguino R A. Rapamycin Interacts with Nutrition to Decrease Basal MetabolicRate of Drosophila melanogaster[M]. Adelphi University, 2017.
19.Sprenger R J, Kim A B, Dzal Y A, et al. Comparison of the CO2 ventilatory response through development in three rodent species: Effect of fossoriality[J]. Respiratory physiology & neurobiology, 2019, 264: 19-27.
20.Toler M. Kinetics and Energetics of Feeding Behaviors in Daubentoniamadagascariensis[D]. Duke University, 2017.